Администрация города Великие Луки МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «Средняя общеобразовательная школа № 5»

руководитель МО естественных наук

Я. И. Сюртукова

28 августа 2015 год

Рабочая программа по химии на 2015 - 2016 учебный год

Разработчик:

Тепкина Е.Н., высшая квалификационная категория Карпова Е.В., высшая квалификационная категория

Пояснительная записка

Рабочая программа учебного курса «Неорганическая химия» для 9 класса составлена на основе Примерной программы основного общего образования по химии и авторской программы О.С. Габриеляна, соответствующей Федеральному компоненту Государственного стандарта общего образования и допущенной Министерством образования и науки Российской Федерации (М.: Дрофа, 2010 г.). Рабочей программе соответствует учебник: «Химия 9 класс» О.С. Габриелян - рекомендовано Министерством образования и науки РФ / 4-е издание, переработанное – М.: Дрофа, 2001г Программа рассчитана на 68 часов, в том числе на контрольные - 3часа, на практические работы – 6 часов.

Содержание программы направлено на освоение учащимися знаний, умений и навыков на базовом уровне, что соответствует Образовательной программе школы. Она включает все темы, предусмотренные федеральным компонентом государственного образовательного стандарта основного общего образования по химии и авторской программой учебного курса.

Рабочая программа построена на основе концентрического подхода.

Цели и задачи курса:

освоение важнейших знаний об основных понятиях и законах химии, химической символике;

овладение умениями наблюдать химические явления, проводить химический эксперимент, производить расчеты на основе химических формул веществ и уравнений химических реакций;

развитие познавательных интересов и интеллектуальных способностей в процессе проведения химического эксперимента, самостоятельного приобретения знаний в соответствии с возникающими жизненными потребностями;

воспитание отношения к химии как к одному из фундаментальных компонентов естествознания и элементу общечеловеческой культуры;

применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

Общая характеристика учебного предмета

В рабочую программу внесены следующие изменения:

- 1. Увеличено число часов на изучение тем:
 - тема «Повторение основных вопросов курса химии 8 класса и введение в курс 9 класса» вместо 6 часов 18 часов
 - тема «Органические соединения» вместо 10 часов 16 часов
- 2. Сокращено число часов на изучение тем:
 - тема «Металлы» вместо 15 часов − 14 часов;
 - тема «Неметаллы» вместо 23 часов 20 часов;
- 3. Из программы исключена часть учебного материала, который отсутствует в обязательном минимуме содержания основных образовательных программ для основной школы, также исключены некоторые демонстрационные опыты, и лабораторные работы и практические работы из-за недостатка времени на их выполнение при 2 часах в неделю, так как авторская программа предусматривает 2/3 часа в неделю.

- 4. В тему «Повторение основных вопросов курса химии 8 класса и введение в курс 9 класса» включён материал «Скорость химических реакций. Химическое равновесие» и уроки по решению расчетных задач типов: 1. вычисления по химическим уравнениям, если одно из исходных веществ взято в избытке, 2. вычисление массы или объёма продукта реакции по известной массе или объёму исходного вещества, содержащего примеси;
- 5. В тему «Неметаллы» включен урок «Кислород», т.к. этот материал входит в обязательный минимум содержания основных образовательных программ.
- 6. Практические работы из практикумов перенесены в соответствующие темы курса.
- 7. Количество часов в теме «Органические соединения» увеличено за счёт темы «Обобщение знаний по химии за курс основной школы», т.к. этот материал вынесен на факультативный курс.

Место раздела в учебном плане

Рабочая программа разработана на основе федерального базисного учебного плана для образовательных учреждений $P\Phi$, в соответствии с которым изучение курса рассчитано на 68 часов (2 часа в неделю).

Рабочая программа ориентирована на использование учебника: Химия. 9 класс: учебник / О.С.Габриелян – 6-е изд., стереотип. – М.: Дрофа, 2005.

Результаты обучения

Личностные

- в ценностно-ориентационной сфере чувство гордости за российскую химическую науку, гуманизм, отношение к труду, целеустремленность;
- формирование ценности здорового и безопасного образа жизни;
- усвоение правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей;
- в трудовой сфере готовность к осознанному выбору дальнейшей образовательной траектории;
- в познавательной (когнитивной, интеллектуальной) сфере умение управлять своей познавательной деятельностью.

формирование основ экологической культуры, соответствующей современному уровню экологического мышления, развитие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях;

Метапредметные

- умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;
- умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
- умение оценивать правильность выполнения учебной задачи, собственные возможности её решения; владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;

- умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач; умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками;
- работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов;
- формулировать, аргументировать и отстаивать своё мнение;
- умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей; планирования и регуляции своей деятельности;
- владение устной и письменной речью, монологической контекстной речью;
- формирование и развитие компетентности в области использования информационнокоммуникационных технологий;
- формирование и развитие экологического мышления, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации.

Предметные

В познавательной сфере:

- давать определения изученных понятий: «химический элемент», «атом», «ион», «молекула», «простые и сложные вещества», «вещество», «химическая формула», «относительная атомная масса», «относительная молекулярная масса», «валентность», «степень окисления», «кристаллическая решетка», «оксиды», «кислоты», «основания», «соли», «амфотерность», «индикатор», «периодический закон», «периодическая таблица», «изотопы», «химическая связь», «электроотрицательность», «химическая «генетическая реакция», «химическое уравнение», связь», «окисление», «восстановление», «электролитическая диссоциация», «скорость химической реакции»;
- описать демонстрационные и самостоятельно проведенные химические эксперименты;
- описывать и различать изученные классы неорганических соединений, простые и сложные вещества, химические реакции;
- классифицировать изученные объекты и явления;
- делать выводы и умозаключения из наблюдений, изученных химических закономерностей, прогнозировать свойства неизученных веществ по аналогии со свойствами изученных; структурировать изученный материал и химическую информацию, полученную из других источников;
- моделировать строение атомов элементов 1-3 периодов, строение простых молекул;
- В ценностно ориентационной сфере: анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с переработкой веществ;

В трудовой сфере: проводить химический эксперимент;

В сфере безопасности жизнедеятельности: оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием.

Требования к уровню подготовки обучающихся

В результате изучения химии ученик 8 класса должен знать / понимать

- *химическую символику*: знаки химических элементов, формулы химических веществ и уравнения химических реакций;
- важнейшие химические понятия: химический элемент, атом, молекула, относительные атомная и молекулярная массы, ион, химическая связь, вещество, классификация веществ, моль, молярная масса, молярный объем, химическая реакция, классификация реакций, электролит и неэлектролит, электролитическая диссоциация, окислитель и восстановитель, окисление и восстановление;
- *основные законы химии*: сохранения массы веществ, постоянства состава, периодический закон;

уметь

- называть: химические элементы, соединения изученных классов;
- объяснять: физический смысл атомного (порядкового) номера химического элемента, номеров группы и периода, к которым элемент принадлежит в периодической системе Д.И. Менделеева; закономерности изменения свойств элементов в пределах малых периодов и главных подгрупп; сущность реакций ионного обмена;
- характеризовать: химические элементы (от водорода до кальция) на основе их положения в периодической системе Д.И. Менделеева и особенностей строения их атомов; связь между составом, строением и свойствами веществ; химические свойства основных классов неорганических веществ;
- определять: состав веществ по их формулам, принадлежность веществ к определенному классу соединений, типы химических реакций, валентность и степень окисления элемента в соединениях, тип химической связи в соединениях, возможность протекания реакций ионного обмена;
- составлять: формулы неорганических соединений изученных классов; схемы строения атомов первых 20 элементов периодической системы Д.И. Менделеева; уравнения химических реакций;
- обращаться с химической посудой и лабораторным оборудованием;
- *распознавать опытным путем:* кислород, водород, углекислый газ, аммиак; растворы кислот и щелочей, хлорид-, сульфат-, карбонат-ионы;
- вычислять: массовую долю химического элемента по формуле соединения; массовую долю вещества в растворе; количество вещества, объем или массу по количеству вещества, объему или массе реагентов, или продуктов реакции;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- безопасного обращения с веществами и материалами;
- экологически грамотного поведения в окружающей среде;
- оценки влияния химического загрязнения окружающей среды на организм человека;
- критической оценки информации о веществах, используемых в быту;
- приготовления растворов заданной концентрации.

Критерии и нормы оценки знаний обучающихся 1. Оценка устного ответа.

Отметка «5»

- ответ полный и правильный на основании изученных теорий;
- материал изложен в определенной логической последовательности, литературным языком:
- ответ самостоятельный.

Отметка «4»:

- ответ полный и правильный на сновании изученных теорий;
- материал изложен в определенной логической последовательности, при этом допущены две-три несущественные ошибки, исправленные по требованию учителя.

Отметка «З»:

- ответ полный, но при этом допущена существенная ошибка или ответ неполный, несвязный.

Отметка «2»:

- при ответе обнаружено непонимание учащимся основного содержания учебного материала или допущены существенные ошибки, которые учащийся не может исправить при наводящих вопросах учителя, отсутствие ответа.

2. Оценка экспериментальных умений.

- Оценка ставится на основании наблюдения за учащимися и письменного отчета за работу.

Отметка «5»:

- работа выполнена полностью и правильно, сделаны правильные наблюдения и выводы;
- эксперимент осуществлен по плану с учетом техники безопасности и правил работы с веществами и оборудованием;
- проявлены организационно трудовые умения, поддерживаются чистота рабочего места и порядок (на столе, экономно используются реактивы).

Отметка «4»:

- работа выполнена правильно, сделаны правильные наблюдения и выводы, но при этом эксперимент проведен не полностью или допущены несущественные ошибки в работе с веществами и оборудованием.

Отметка «3»:

- работа выполнена правильно не менее чем наполовину или допущена существенная ошибка в ходе эксперимента в объяснении, в оформлении работы, в соблюдении правил техники безопасности на работе с веществами и оборудованием, которая исправляется по требованию учителя.

Отметка «2»:

- допущены две (и более) существенные ошибки в ходе эксперимента, в объяснении, в оформлении работы, в соблюдении правил техники безопасности при работе с веществами и оборудованием, которые учащийся не может исправить даже по требованию учителя;
- работа не выполнена, у учащегося отсутствует экспериментальные умения.

3. Оценка умений решать расчетные задачи.

Отметка «5»:

- в логическом рассуждении и решении нет ошибок, задача решена рациональным способом;

Отметка «4»:

- в логическом рассуждении и решения нет существенных ошибок, но задача решена нерациональным способом, или допущено не более двух несущественных ошибок.

Отметка «3»:

- в логическом рассуждении нет существенных ошибок, но допущена существенная ошибка в математических расчетах.

Отметка «2»:

- имеется существенные ошибки в логическом рассуждении и в решении.
- отсутствие ответа на задание.

4. Оценка письменных контрольных работ.

Отметка «5»:

- ответ полный и правильный, возможна несущественная ошибка.

Отметка «4»:

- ответ неполный или допущено не более двух несущественных ошибок.

Отметка «3»:

- работа выполнена не менее чем наполовину, допущена одна существенная ошибка и при этом две-три несущественные.

Отметка «2»:

- работа выполнена меньше чем наполовину или содержит несколько существенных ошибок.
- работа не выполнена.

При оценке выполнения письменной контрольной работы необходимо учитывать требования единого орфографического режима.

5. Оценка тестовых работ.

```
81-100% — оценка «5»;
```

61-80% — оценка «4»:

41-60% — оценка «З»;

До 40% — оценка «2».

Содержание курса

Повторение основных вопросов курса 8 класса и введение в курс 9 класса (18ч)

Характеристика элемента по его положению в периодической системе химических элементов Д. И. Менделеева. Свойства оксидов, кислот, оснований и солей в свете теории электролитической диссоциации и процессов окисления-восстановления. Генетические ряды металла и неметалла.

Понятие о переходных элементах. Амфотерность. Генетический ряд переходного элемента.

Периодический закон и периодическая система химических элементов Д. И. Менделеева в свете учения о строении атома. Их значение.

Скорость химических реакций. Химическое равновесие

Лабораторный опыт. 1. Получение гидроксида цинка и исследование его свойств.

Металлы (14 часов)

Положение металлов в периодической системе химических элементов Д. И. Менделеева. Металлическая кристаллическая решетка и металлическая химическая связь. Общие физические свойства металлов. Сплавы, их свойства и значение. Химические свойства металлов как восстановителей. Электрохимический ряд напряжений металлов и его использование для характеристики химических свойств конкретных металлов. Способы получения металлов: пиро-, гидро- и электрометаллургия. Коррозия металлов и способы борьбы с ней.

Общая характеристика щелочных металлов. Металлы в природе. Общие способы их получения. Строение атомов. Щелочные металлы — простые вещества, их физические и химические свойства. Важнейшие соединения щелочных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, сульфаты, нитраты), их свойства и применение в народном хозяйстве. Калийные удобрения.

Общая характеристика элементов главной подгруппы II группы. Строение атомов. Щелочноземельные металлы — простые вещества, их физические и химические свойства. Важнейшие соединения щелочноземельных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, нитраты, сульфаты и фосфаты), их свойства и применение в народном хозяйстве.

Алюминий. Строение атома, физические и химические свойства простого вещества. Соединения алюминия — оксид и гидроксид, их амфотерный характер. Важнейшие соли алюминия. Применение алюминия и его соединений.

Железо. Строение атома, физические и химические свойства простого вещества. Генетические ряды Fe^{2+} и Fe^{3+} . Качественные реакции на Fe^{2+} и Fe^{3+} . Важнейшие соли железа. Значение железа, его соединений и сплавов в природе и народном хозяйстве.

Демонстрации. Образцы щелочных и щелочноземельных металлов. Образцы сплавов. Взаимодействие натрия, лития и кальция с водой. Взаимодействие натрия и

магния с кислородом. Взаимодействие металлов с неметаллами. Получение гидроксидов железа (II) и (III).

Лабораторные опыты. 2. Ознакомление с образцами металлов. 3. Взаимодействие металлов с растворами кислот и солей. 4. Ознакомление с образцами природных соединений: а) натрия; б) кальция; в) алюминия; г) железа. 5. Получение гидроксида алюминия и его взаимодействие с растворами кислот и щелочей. 6. Качественные реакции на ионы Fe^{2+} и Fe^{3+} .

Практическая работа. Решение экспериментальных задач по теме «Металлы и их соединения»

Контрольная работа «Металлы и их соединения»

Неметаллы (20 часов)

Общая характеристика неметаллов: положение в периодической системе Д. И. Менделеева, особенности строения атомов, электроотрицательность как мера «неметалличности», ряд электроотрицательности. Кристаллическое строение неметаллов — простых веществ. Аллотропия. Физические свойства неметаллов. Относительность понятий «металл», «неметалл».

Водород. Положение в периодической системе химических элементов Д. И. Менделеева. Строение атома и молекулы. Физические и химические свойства водорода, его получение и применение.

Общая характеристика галогенов. Строение атомов. Простые вещества, их физические и химические свойства. Основные соединения галогенов (галогеноводороды и галогениды), их свойства. Качественная реакция на хлорид-ион. Краткие сведения о хлоре, броме, фторе и иоде. Применение галогенов и их соединений в народном хозяйстве.

Сера. Строение атома, аллотропия, свойства и применение ромбической серы. Оксиды серы (IV) и (VI), их получение, свойства и применение. Сероводородная и сернистая кислоты. Серная кислота и ее соли, их применение в народном хозяйстве. Качественная реакция на сульфат-ион.

Азот. Строение атома и молекулы, свойства простого вещества. Аммиак, строение, свойства, получение и применение. Соли аммония, их свойства и применение. Оксиды азота (II) и (IV). Азотная кислота, ее свойства и применение. Нитраты и нитриты, проблема их содержания в сельскохозяйственной продукции. Азотные удобрения.

Фосфор. Строение атома, аллотропия, свойства белого и красного фосфора, их применение. Основные соединения: оксид фосфора (V), ортофосфорная кислота и фосфаты. Фосфорные удобрения.

Углерод. Строение атома, аллотропия, свойства аллотропных модификаций, применение. Оксиды углерода (II) и (IV), их свойства и применение. Качественная реакция на углекислый газ. Карбонаты: кальцит, сода, поташ, их значение в природе и жизни человека. Качественная реакция на карбонат-ион.

Кремний. Строение атома, кристаллический кремний, его свойства и применение. Оксид кремния (IV), его природные разновидности. Силикаты. Значение соединений кремния в живой и неживой природе. Понятие о силикатной промышленности.

Демонстрации. Образцы галогенов — простых веществ. Взаимодействие галогенов с натрием, алюминием. Вытеснение хлором брома или иода из растворов их солей.

Взаимодействие серы с металлами, водородом и кислородом.

Взаимодействие концентрированной азотной кислоты с медью.

Поглощение углем растворенных веществ или газов. Восстановление меди из ее оксида углем. Образцы природных соединений хлора, серы, фосфора, углерода, кремния.

Образцы важнейших для народного хозяйства сульфатов, нитратов, карбонатов, фосфатов. Образцы стекла, керамики, цемента.

Лабораторные опыты. 7. Качественная реакция на хлорид-ион. 8. Качественная реакция на сульфат-ион. 9. Распознавание солей аммония. 10. Получение углекислого газа и его распознавание. 11. Качественная реакция на карбонат-ион. 12. Ознакомление с природными силикатами. 13. Ознакомление с продукцией силикатной промышленности.

Практическая работа. Решение экспериментальных задач по теме «Неметаллы и их соединения»

Контрольная работа «Неметаллы и их соединения»

Органические соединения (16 часов)

Вещества органические и неорганические, относительность понятия «органические вещества». Причины многообразия органических соединений. Химическое строение органических соединений. Молекулярные и структурные формулы органических веществ.

Метан и этан: строение молекул. Горение метана и этана. Дегидрирование этана. Применение метана.

Химическое строение молекулы этилена. Двойная связь. Взаимодействие этилена с водой. Реакции полимеризации этилена. Полиэтилен и его значение.

Понятие о предельных одноатомных спиртах на примерах метанола и этанола. Трехатомный спирт — глицерин.

Понятие об альдегидах на примере уксусного альдегида. Окисление альдегида в кислоту.

Одноосновные предельные карбоновые кислоты на примере уксусной кислоты. Ее свойства и применение. Стеариновая кислота как представитель жирных карбоновых кислот

Реакции этерификации и понятие о сложных эфирах. Жиры как сложные эфиры глицерина и жирных кислот.

Понятие об аминокислотах. Реакции поликонденсации. Белки, их строение и биологическая роль.

Понятие об углеводах. Глюкоза, ее свойства и значение. Крахмал и целлюлоза (в сравнении), их биологическая роль.

Демонстрации. Модели молекул метана и других углеводородов. Взаимодействие этилена с бромной водой и раствором перманганата калия. Образцы этанола и глицерина. Качественная реакция на многоатомные спирты. Получение уксусно-этилового эфира. Омыление жира. Взаимодействие глюкозы с аммиачным раствором оксида серебра. Качественная реакция на крахмал. Доказательство наличия функциональных групп в растворах аминокислот. Горение белков (шерсти или птичьих перьев). Цветные реакции белков.

Лабораторные опыты. 14. Изготовление моделей молекул углеводородов. 15. Свойства глицерина. 16. Взаимодействие глюкозы с гидроксидом меди (II) без нагревания и при нагревании. 17. Взаимодействие крахмала с иодом.

Контрольная работа «Органические вещества»

Требования к уровню подготовки

Соблюдать правила:

- техники безопасности при обращении с химической посудой и лабораторным оборудованием (пробирками, химическими стаканами, воронкой, лабораторным штативом, спиртовкой); растворами кислот, щелочей, негашеной известью, водородом, метаном, бензином, ядохимикатами, минеральными удобрениями;
- личного поведения, способствующего защите окружающей среды от загрязнения;

оказания помощи пострадавшим от неумелого обращения с веществами.

Проводить:

- нагревание, отстаивание, фильтрование и выпаривание;
- опыты по получению и собиранию кислорода, оксида углерода (IV), водорода;
- распознавание кислорода, водорода, углекислого газа, растворов кислот и щелочей, хлорид-, сульфат- и карбонат-ионов;
- изготовление моделей молекул веществ (H₂0, C0₂, HC1, CH₄, C₂H₆, C₂H₄, C₂H₂, CH₃OH, C₂H₅OH, CH₃COOH);
- вычисления: а) массовой доли химического элемента по формуле вещества, б) количества вещества (массы) по количеству вещества (массе) одного из вступивших в реакцию или полученных веществ, в) массовой доли растворенного вещества.

Называть:

- химический элемент по его символу;
- вещества по их химическим формулам;
- свойства неорганических и органических веществ;
- функциональные группы органических веществ;
- признаки и условия осуществления химических реакций;
- факторы, влияющие на скорость химической реакции;
- типы химических реакций;
- биологически важные органические соединения (углеводы, жиры, белки).

Определять:

- простые и сложные вещества;
- принадлежность веществ к определенному классу;
- валентность и (или) степень окисления химических элементов в бинарных соединениях;
- вид химической связи между атомами в типичных случаях: а) щелочной металл галоген, б) водород типичные неметаллы, в) в молекулах простых веществ;
- тип химической реакции: а) по числу и составу исходных веществ и продуктов реакции, б) по характеру теплового эффекта, в) по изменению степеней окисления химических элементов.

Составлять:

- формулы неорганических соединений (по валентности химических элементов или степени окисления);
- молекулярные, структурные формулы органических веществ;
- схемы распределения электронов в атомах химических элементов с порядковыми номерами 1—20;
- уравнения химических реакций различных типов;
- уравнения электролитической диссоциации кислот, оснований, солей;
- полные и сокращенные ионные уравнения реакций обмена.

Характеризовать:

- качественный и количественный состав вещества;
- химические элементы малых периодов, а также калий и кальций по положению в периодической системе Д. И. Менделеева и строению их атомов;
- свойства высших оксидов элементов с порядковыми номерами 1—20, а также соответствующих им кислот и оснований;

- химические свойства органических и неорганических веществ;
- химическое загрязнение окружающей среды как следствие производственных процессов (на примере производства серной кислоты) и неправильного использования веществ в быту, сельском хозяйстве;
- способы защиты окружающей среды от загрязнений;
- строение и общие свойства металлов;
- связь между составом, строением, свойствами веществ и их применением;
- области практического применения полиэтилена, металлических сплавов (чугун, сталь, дюралюминий), силикатных материалов (стекло, цемент);
- свойства и физиологическое действие на организм оксида углерода (II), аммиака, хлора, озона, ртути, этилового спирта, бензина;
- состав и применение веществ: пищевой соды, медного купороса, йода (спиртовой раствор), глюкозы, сахарозы, крахмала и клетчатки;
- круговороты углерода, кислорода, азота в природе Земли (по схемам).

Объяснять:

- физический смысл порядкового (атомного) номера химического элемента, номеров группы и периода, к которым он принадлежит в периодической системе Д. И. Менделеева;
- закономерности изменения свойств химических элементов малых периодов и главных подгрупп;
- причины сходства и различия в строении атомов химических элементов одного периода и одной главной подгруппы периодической системы Д. И. Менделеева;
- причины многообразия веществ;
- сущность процессов окисления и восстановления;
- условия горения и способы его прекращения;
- сущность реакции ионного обмена;
- зависимость свойств веществ от вида химической связи.

Перечень химических элементов, веществ и их свойств, включенных в требования к уровню подготовки выпускников

Химические элементы:

H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, CI, AT, K, Ca, Fe, Cu, Ag, Zn.

Простые вещества

Неметаллы:

водород (взаимодействие с кислородом, оксидом меди (II)), получение в лаборатории при взаимодействии цинка (железа) с соляной кислотой;

кислород (взаимодействие с водородом, серой, фосфором, магнием, медью, железом, метаном), получение из пероксида водорода и перманганата калия, аллотропия;

сера (взаимодействие с кислородом, цинком, железом и магнием);

углерод (аллотропия, взаимодействие с кислородом с образованием оксидов углерода (II) и (IV)), восстановление меди углем и водородом из оксида меди (II).

Металлы:

натрий, калий, кальций (взаимодействие с серой и водой);

магний и алюминий (взаимодействие с серой, соляной кислотой);

железо, цинк (взаимодействие с серой, соляной кислотой, растворами солей $CuCl_2$, $CuSO_4$).

Сложные вещества

Оксиды неметаллов: $S0_2$, $S0_3$, P_20_5 , $C0_2$, $Si0_2$ (отношение к воде, щелочам).

Оксиды металлов: Na_20 , MgO, CaO, $A1_20_3$, Fe_20_3 , CuO (отношение к воде, кислотам).

Основания: NaOH, KOH, Ca(OH) $_2$ (взаимодействие с кислотами, с оксидами неметаллов); Cu(OH) $_2$, Fe(OH) $_3$ (взаимодействие с кислотами, разложение при нагревании).

Амфотерные гидроксиды: $Zn(OH)_2$, $A1(OH)_3$ (взаимодействие с растворами кислот и щелочей, разложение при нагревании).

Кислоты: HC1, H_2S0_4 (отношение к индикаторам, взаимодействие с некоторыми металлами, основными оксидами, основаниями, солями — $CaC0_3$, $BaC1_2$, $AgN0_3$).

Соли: хлориды, нитраты, сульфаты, сульфиды железа (II), меди (II), фосфаты; химические реакции замещения и ионного обмена.

Реакции окисления-восстановления: металл + неметалл, металл + кислота, металл + соль, водород + оксид металла.

Органические вещества

Предельные углеводороды: метан (горение, взаимодействие с хлором — I стадия реакции), этан (горение).

Непредельные углеводороды: этилен (горение, взаимодействие с водородом, бромом, полимеризация этилена); ацетилен (горение).

Спирты: метанол, этанол (горение).

Карбоновые кислоты: уксусная кислота (химические свойства как электролита, реакция этерификации).

Биологически важные вещества: углеводы, жиры, белки.